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A finite element model based on a coupled refined high-order global-local theory for 

static electromechanical response of smart multilayered/sandwich beams 
 

 

Abstract     

 

In the present study, a coupled refined high-order global-local theory is developed for predicting fully 

coupled behavior of smart multilayered/sandwich beams under electromechanical conditions. The proposed 

theory considers effects of transverse normal stress and transverse flexibility which is important for beams 

including soft cores or beams with drastic material properties changes through depth. Effects of induced 

transverse normal strains through the piezoelectric layers are also included in this study. In the presence of 

non-zero in-plane electric field component, all the kinematic and stress continuity conditions are satisfied at 

layer interfaces. In addition, for the first time, conditions of non-zero shear and normal tractions are satisfied 

even while the bottom or the top layer of the beam is piezoelectric  

A combination of polynomial and exponential expressions with a layerwise term containing first order 

differentiation of electrical unknowns is used to introduce the in-plane displacement field. Also, the 

transverse displacement field is formulated utilizing a combination of continuous piecewise fourth-order 

polynomial with a layerwise representation of electrical unknowns. Finally, a quadratic electric potential is 

used across the thickness of each piezoelectric layer.  

It is worthy to note that in the proposed shear locking-free finite element formulation, the number of 

mechanical unknowns is independent of the number of layers. Excellent correlation has been found between 

the results obtained from the proposed formulation for thin and thick piezoelectric beams with those resulted 

from the three-dimensional theory of piezoelasticity. Moreover, the proposed finite element model is 

computationally economic.  

 

 

Keywords: Finite element; piezoelectric; Laminated composite beams; Global-local theory; Transverse shear 

and normal stresses; Non-homogenous shear stress boundary conditions; electric unknowns. 

 

1. Introduction 

 

Future engineering research is inclined toward structures that are able to sense, respond and minimize the 

effects of the applied disturbance on them. This class of structures is generally called smart structures. 

Piezoelectric materials have been widely used in the form of sensors and actuators in order to self-respond to 

structures. Thanks to small dimensions, it is possible to use many piezoelectric patches as sensors and 

actuators, without causing significant changes in dynamic properties of the main structure. In the application 

of sensors, mechanically induced deformations can be determined by measuring the induced electrical 

potential, whereas in the application of actuators, deformations can be controlled by introducing an 

appropriate electric potential.  A comprehensive overview on applications of smart structures can be found in 

Chopra [1] and Gaudenzi [2]. 

Various mathematical models developed for structures containing piezoelectric sensors and actuators can 

be classified into two broad categories including induced strain models and coupled electromechanical 

models. The induced strain models use approximate theories in order to incorporate external forces 

associated with the piezoelectric actuators. The electric potential is neglected as a state variable in the 

formulation; therefore these models cannot capture the coupled mechanical and electrical responses and are 

only limited to predict the actuator behavior of piezoelectric materials (e.g., Crawley and de Luis [3], Tzou 

and Gadre [4], Wang and Rogers [5], Sung et al. [6]). Compared to the induced strain models, the coupled 

electromechanical models provide a more consistent representation of both the sensor and actuator responses 

of piezoelectric materials, incorporating both the displacements and the electric potentials as the state 

variables in the formulation. An overview on the modeling of piezoelectric structures is given in Benjeddou 

[7], and Saravanos and Heyliger [8]. 

The most accurate approach for coupled electromechanical analysis of the piezoelectric laminated 

structures is solving the governing differential equations of the three-dimensional (3D) theory of 

piezoelasticity (e.g., Brooks and Heyliger [9], Ray et al. [10-11]). However, development of these solutions 

is a difficult task and the resulted solution cannot be expressed in a closed form for the general cases of 

arbitrary geometry, boundary and loading conditions. Piezoelectric 3D finite element was proposed by Allik 

and Hughes [12], Tzou and Tseng [13], and Xu et al. [14]. However, the cost of the 3D finite element 
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analysis is relatively high, and it will become a problem when piezoelectric layers are thin compared to the 

structure size.  

These drawbacks encouraged researchers to employ the two-dimensional (2D) models, prescribing 

variations of the displacement components and electric potential in the transverse direction. In the available 

2D theories in the literature, the electric potential in the piezoelectric layers is mostly modeled by a layerwise 

approach (Reddy [15]). Concerning the mechanical displacement fields, 2D models can be classified into 

three broad groups: global or equivalent single layer theories (ESLT), local theories (e.g., layer-wise (LWT) 

theories), and global-local theories. In the following paragraphs these groups have been adequately reviewed.  

In ESLT, the number of unknowns is independent of the number of layers, but continuity of transverse 

shear stresses is often violated at the layer interfaces. Thus, in some circumstances, classical (Hwang and 

Park [16]), Reissner-Mindlin-type first-order shear-deformation (Suleman and Venkaya [17], Sheikh et al. 

[18], Kogl and Bucalem [19-20]), and third-order shear deformation theories (Chee et al. [21], Jiang and Li 

[22], Shu [23], Thornburgh and Chattopadhyay [24], Fukunaga et al. [25], Mitchell and Reddy [26]) which 

are variants of the ESLT, may lead to inaccurate results. 

In order to overcome the shortcoming of the ESLT, the idea of LWT or discrete-layer theory were 

presented by some researchers (Heyliger and Saravanos [27], Saravanos and Heyliger [28], Saravanos et al. 

[29], Kusculuoglu et al. [30], Garcia Lage et al. [31-32], Robaldo et al. [33], Tzou and Ye [34]). The 

displacement field across the thickness of each ply was approximated by a piecewise continuous function. In 

spite of the fact that LWT reduces the restrictions of ESLT, in these types of theories the number of 

unknowns are dependent on the number of the layers which in turn, increases the computational cost of the 

analysis. In order to improve the accuracy of ESLT while avoiding the computational burden of the LWT, 

zigzag (ZZ) theories were proposed by some researchers. These theories are able to reproduce piecewise 

continuous displacement and transverse stress fields in the thickness direction of the laminated structures. 

Ambartsumyan [35] is pioneer in these types of approaches and many extensions have been proposed to 

extend Ambartsumyan's work to generally laminated configurations. ZZ theories were used and developed by 

researcher such as Whitney [36], Icardi [37-38], Reissner [39], Murakami [40-41], Carrera [42-43] (see [44]). 

Oh and Cho [45] proposed a third order ZZ model for electromechanical problems of multilayer plates. 

Kapuria [46], Kapuria et al. [47], and Kapuria and Alam [48] introduced an efficient coupled ZZ theory for 

the static and dynamic analysis of piezoelectric laminated\sandwich beams based on third order ZZ 

approximations. Polit and Touratier [49], and Dau et al. [50] presented a ZZ theory for the analysis of the 

laminated plates\shells based on sine function. The extension of this ZZ theory to the piezoelectric effect was 

carried out by Ossadzow-David and Touratier [51], and Fernandes and Pouget [52] using an analytical 

approach. By introducing a layer refinement in the kinematics, Vidal and Polit [53] enriched the ZZ sinus 

model and introduced a family of sinus finite elements for the analysis of rectangular laminated beams. The 

coupling with the piezoelectric effect is provided by Beheshti-Aval and Lezgy-Nazargah [54-55]. For the 

most recent works on piezoelectric ZZ models, readers can refer to D’Ottavio and Kröplin [56], and Carrera 

and Nali [57]. 

Based on the double superposition of the local components of the in-plane displacements on the global 

ones, Li and Liu [58] proposed the first global-local laminate theory. Using this theory, the in-plane stresses 

and transverse shear stresses can be well estimated from the constitutive equations. Shariyat [59] extended 

the double superposition theory of Li and Liu, and proposed a generalized global-local higher order theory 

for the composite laminates. This generalized global-local higher order theory satisfies the transverse shear 

and normal stresses continuity at the interfaces. Lezgy-Nazargah et al. [60-61] introduced a computationally 

low cost refined global-local theory for the analysis of multilayered\sandwich beams based on an exponential 

function.  In addition to ensure continuity conditions of the displacements and the transverse shear stresses at 

the layer interfaces, the non-uniform non-homogenous boundary conditions of the transverse shear stresses 

on the upper and lower surfaces of the beam are also satisfied in the works of these researchers. Zhen and 

Wanji [62] have extended the global-local laminate theory of Li and Liu for the electromechanical analysis of 

laminated piezoelectric plates. An excellent review in theories and computational models for laminated 

piezoelectric beams, plates, and shells has been provided by Saravanos and Heyligher [8].  

Most of the studies on the analysis of laminated structures containing piezoelectric layers neglect the in-

plane electric field components. Due to direct piezoelectric effect or applying non-uniform actuation potential 

along longitudinal direction (e.g., in using segmented piezoelectric actuator layers), these electric field 

components are not zero and should be considered in the analysis. In some limited studies which the non-zero 

in-plane electric field components have been considered in the formulation, the boundary conditions of the 

transverse shear stresses at the top and bottom surfaces of the piezoelectric layers are not exactly satisfied 

[21-22, 54]. In addition to the aforementioned drawback, the available laminated piezoelectric beam/plate 

theories either do not consider the transverse flexibility or do not impose the continuity conditions of the 
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transverse normal stresses at the interfaces [45-46]. However, the transverse normal stresses and strains and 

the transverse flexibility have important roles in the analysis of such structures, especially those with soft 

cores. 

To overcome restrictions of the available theories, in the present study, a coupled refined high-order 

global-local laminate theory is developed based on the double superposition hypothesis for the static analysis 

of piezoelectric laminated/sandwich composite beams. In the presence of non-zero longitudinal electric field, 

the presented theory not only satisfies the continuity conditions of the transverse shear stresses at the top and 

bottom surfaces of the piezoelectric layers but also the non-homogenous shear traction conditions are exactly 

satisfied. The boundary conditions of normal tractions are also fulfilled on the upper and lower surfaces of 

the beam. Besides, continuity conditions of the displacement components, transverse normal stresses, and the 

transverse normal stress gradient at the layer interfaces are satisfied. This novel coupled refined global-local 

theory is also able to capture the transverse normal strains induced through the piezoelectric layers. With the 

exception of the coupled discrete layer theory of Saravanos and Heyliger [8, 27-29] and coupled ZZ theory of 

Kapuria [46-48], all of the theories described above have discarded the transverse strains due to electric 

potential, while these strains have significant effects on the electromechanical response of piezoelectric 

laminated structures under electrical loadings. To the best knowledge of the authors, this work is the first 

numerical experience for the analysis of smart laminated composite and sandwich beams including both 

electric transverse strains and transverse flexibility effects. 

In the proposed model, the in-plane displacement component is described by a combination of 

polynomial and exponential expressions with a layerwise term which contains first order differentiation of 

electrical unknowns. A combination of continuous piecewise fourth-order polynomial with a layerwise 

representation of electrical unknowns is assumed for the transverse displacement component. Concerning the 

electric part, a quadratic electric potential has been considered across the thickness direction of the 

piezoelectric layers. Having some novel features, the present model is computationally significantly 

economic and has finally one mechanical independent generalized unknown parameter more than FSDT.  

Based on the proposed model, a three nodded shear locking-free beam element is employed. The element 

has 0C -continuity except for in-plane variations of the transverse deflection which has 1C . The virtual work 

principle leads to a derivation that could include dynamic analysis. However, in this study only static 

problems have been considered. Various validation examples are examined using a written computer code 

whose algorithm is based on the present model. The obtained numerical results exhibit a good agreement 

with the 3D exact piezoelasticity solutions and the coupled 3D finite element (ABAQUS) results. 

  

2. Mathematical formulation 
 

2.1. Geometry and coordinate system 

 

The considered piezoelectric beam is a prismatic one with a rectangular uniform cross section of height h 

and width b. The beam is made of lN  layers of different linearly elastic materials. Each layer may be 

piezoelectric (actuators/sensors) or non-piezoelectric. The geometric parameters of the laminated beam and 

the chosen Cartesian coordinate system ),,( zyx  are shown in Fig. 1. As it may be noted from Fig. 1, the x , 

y  and z  axes are respectively along the length, width and thickness of the piezoelectric beam. Since it is 

intended to develop a global-local beam theory, transverse global and local coordinate systems shown in Fig. 

2 are chosen for the present piezoelectric beam model. 

 

2.2. Constitutive coupled equations 

 

In this model the non-piezoelectric materials is assumed to be orthotropic and the general type of 

piezoelectric materials is ‘orthorhombic-class mm2’. Concerning this assumption, the constitutive equations 

of piezoelectric materials in their global material coordinate system can be expressed as: 
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(2) 

In a piezoelectric laminated/sandwich beam with small width, the following assumptions are made: 

0,0,0,0  yxyyzyy E                                                                                                          (3) 

Using the conditions (3) and using the static condensation procedure, the constitutive relations (1) and (2) 

could be expressed as: 

EχεeD

EeεCζ
T




                                                                                                                                                  (4) 

where  
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2.3. Approximation of electric potential  

 

Based on the successful experience of Kogl and Bucalem [19-20], in this study the following quadratic 

electric potential has been considered across the thickness direction of the k-th piezoelectric layer: 

),()(),()(),()(),,,( 231 txzLtxzLtxzLtzyx k

t

kk

c

kk

b

kk                                                                               (5) 

where ),( txk

b , ),( txk

c  and ),( txk

t  denote the electric potential at the bottom, center and top of the k-th 

piezoelectric layer, respectively. )(zL k

j  )3,2,1( j  are the interpolation functions as follows: 
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The electric field components can be related to the electric potential using the following relations:  
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2.4. Approximation of displacement and strain fields 
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In the present study, the following refined high-order global-local displacement field is employed (

lNk ,....,2,1 ) [61]: 
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where H is Heaviside’s function. The functions ),,,( tzyxu  and ),,,( tzyxw  represent the horizontal (in-

plane) and vertical (transverse) displacement components, respectively. The )t,x(u0 , ),(0 txw , ),(1 txw , 

),(2 txw , ),(3 txw and ),(4 txw  are global displacement parameters of the reference layer (e.g., the first layer). 

t is the time and ),( tx  denotes the shear-bending rotation around the y axis. ),( txj and ),( txj are 

functions to be determined as to fulfill the transverse normal stress and stress gradient continuity conditions 

at the laminate interfaces. The local components 
k
Lu  and 

k
Lû  can be chosen based on the layerwise variations 

concept. Therefore, if they are chosen as combinations of the Legendre polynomial to simplify the numerical 

integration process, one may write: 
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Local variations of the transverse displacement component are represented by the two summations appeared 

in Eq. (8), employing a discrete-layer concept. The continuity conditions of the displacement components at 

the laminate interfaces should be satisfied. Due to using a layerwise description for the local term, the 

transverse displacement component satisfies the kinematic continuity condition automatically. By imposing 

the continuity conditions on the in-plane displacement component, the following two equations are resulted: 

1 k
L

k
L uu   ,    

lNk ,...,2                                                                                                                          (11) 

1ˆˆ  k
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lNk ,...,2                                                                                                                           (12)  

Eqs. (11) and (12) lead to the following equations: 
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3 )1( uu kk                                                                                                                                               (14) 

Since ZZ models based on constant transverse displacement assumption  are able  to estimate the 

transverse shear stresses of the piezoelectric multilayered structures accurately [51, 62], the simplifying 

assumption ),,(),,,( 0 txwtzyxw   is used in the computation of the transverse shear stress only to avoid  the 

computational complexity. Hence, the transverse shear stress of the k-th layer may be determined from the 

following equation: 
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where 
)(

55

k

k cG  is the transverse shear modulus of the k-th layer. By imposing the transverse shear stress 

continuity condition at the mutual interfaces of the adjacent layers, the following recursive condition is 

obtained: 
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Furthermore, the boundary conditions of the prescribed values of the shear tractions (that are generally non-

zero values) on the top and bottom surfaces of the piezoelectric laminated/sandwich beam should be satisfied. 

Thus, the following two boundary conditions are obtained: 
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where ),( txX  and ),( txX  are the prescribed shear tractions of the bottom and top surfaces of the beam, 

respectively. By using of Eqs. (13) and (16), the following recursive equations are obtained: 
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where the coefficients 
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jF  and 
k

jH  are ( 10,....,2,1j ):  
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kk

kkkkk

kk

kkkkk

aG

aGaG
H

aG

aGaG
F

2

)3(
,

2

)33( 11
3

11
3





   

kk

kk

kkkkk FH
aG

aGaG
F 44

11
4 ,

2

)66(



   

kk

kk

k

kk

k FH
aG

zLe
F 55

115

5 ,
2

)(
  

kk

kk

k

kk

k FH
aG

zLe
F 66

315

6 ,
2

)(
  

kk

kk

k

kk

k FH
aG

zLe
F 77

215

7 ,
2

)(
  

kk

kk

k

kk

k FH
aG

zLe
F 88

1

1

1

15

8 ,
2

)(




 

kk

kk

k

kk

k FH
aG

zLe
F 99

1

3

1

15

9 ,
2

)(




 

kk

kk

k

kk

k FH
aG

zLe
F 1010

1

2

1

15

10 ,
2

)(




                                              (21) 

Substituting Eq. (14) into Eq. (17) yields: 

xt

k

xc

k

xb

k

kkk
k

aG

zLe

aG

zLe

aG

zLe

uuX
aG

u

,

1

11

1

1

2

1

15

,

1

11

1

1

3

1

15

,

1

11

1

1

1

1

15

1

2

1
1

1

11

1

3

)(
6

)(
)1()(

6

)(
)1()(

6

)(
)1(

2

)1(

6

)1(

6

)1(

 















                                         (22) 

The above equation expresses
ku3  in terms of

1
1u , 

1
2u , X , xb ,

1 )( , xc ,

1 )(  and xt ,

1)( . Substituting Eq. (22) 

into the recursive Eqs. (19) and (20) relates 
ku1 and 

ku2  to
1
1u , 

1
2u , )( ,0 xw , X , x

i

b ,)( , x

i

c ,)(  and 
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x

i

t ,)(  where 
lPNi ,...,2,1  and lPN denotes the number of piezoelectric layers. After calculating lN

u1 , lN
u2  

and lN
u3  from the recursive Eqs. (19), (20) and (22), respectively and substituting them into Eq. (18), 1

2u  can 

be eliminated. Thus, Eqs. (19), (20) and (22) can be rewritten as: 

 


 



lPN

i

x

i

t

k

ix

i

c

k

ix

i

b

k

i

kk

k

x

kk

txtxtxtxXtxX

txutxwtxtxu

1

,1,1,111

1

11,011

),(),(),(),(),(

),()),(),((),(





 

 


 



lPN

i

x

i

t

k

ix

i

c

k

ix

i

b

k

i

kk

k

x

kk

txtxtxtxXtxX

txutxwtxtxu

1

,2,2,222

1

12,022

),(),(),(),(),(

),()),(),((),(





 

 


 



lPN

i

x

i

t

k

ix

i

c

k

ix

i

b

k

i

kk

k

x

kk

txtxtxtxXtxX

txutxwtxtxu

1

,3,3,333

1

13,033

),(),(),(),(),(

),()),(),((),(





                            (23)  

where coefficients 
k
1 ,

k
2 ,

k
3 ,

k
1 ,

k
2 ,

k
3 ,

k
1 ,

k
2 ,

k
3 , 

k
1 ,

k
2 ,

k
3 , 

k

i1 ,
k

i2 ,
k

i3 ,
k

i1 ,
k

i2 ,
k

i3 , 
k

i1 ,
k

i2 ,

k

i3  are obtained from the procedure described above. These coefficients are only dependent on the material 

properties and the global coordinates of the layers.                                      

The transverse normal stress and stress gradient in the k-th layer are determined from the following 

equations: 

)
)()()(

(

))()(2)(432(

)))()()()()()((

))(())(()()()((

231)(

33

1

1

11

1

1

14

3

3

2

21

)(

33

1

,3,2,1

,,

1

,1,,,0,0

)(

13

)()(

33

)()(

33

)()(

13

)(

k

t

k

k

c

k

k

b

k

k

k

j

jjj

k

j

jj

k

PN

i

xx

i

t

elec

ixx

i

c

elec

ixx

i

b

elec

i

xxxxxxxxx

k

k

z

kk

zz

kk

xx

kk

zz

dz

zLd

dz

zLd

dz

zLd
e

zzHzzzzHwzwzwzwc

zOzOzO

XzRXzPuzTzJwzwuc

Eecc

l









































            (24) 

)
)()()(

(

))(21262(

)))()()()()()((

)()()()()()()((

2

2

2

2

3

2

2

1

2

)(

33

1

1

14

2

32

)(

33

1

,,3,,2,,1

,,,,

1

,1,,,0,,0

)(

13

)(

,

k

t

k

k

c

k

k

b

k

k

k

j

jj

k

PN

i

xx

i

tz

elec

ixx

i

cz

elec

ixx

i

bz

elec

i

xzxzxzzxxxxx

kk

zzz

dz

zLd

dz

zLd

dz

zLd
e

zzHwzwzwc

zOzOzO

XzRXzPuzTzJwwc

l





























                                 (25) 

where 

))()()()
2

5

2

3
()

2

3

2

1
(()( 13

3

2

1

2

1

)/(2 2





   kk

kkkk
N

k

kk

k

hz zzHzzH
zzz

zzezJ
l



))()(())
2

5

2

3
()

2

3

2

1
(()( 13

3

2

1

2

1 



 kk

kkkk
N

k

kk

k zzHzzH
zzz

zzT
l

  

))()(())
2

5

2

3
()

2

3

2

1
(()( 13

3

2

1

2

1 



 kk

kkkk
N

k

kk

k zzHzzH
zzz

zzP
l

  

))()(())
2

5

2

3
()

2

3

2

1
(()( 13

3

2

1

2

1 



 kk

kkkk
N

k

kk

k zzHzzH
zzz

zzR
l

                          

))()(())
2

5

2

3
()

2

3

2

1
(()( 13

3

2

1

2

11 



 kk

k

i
kkk

i

N

k

kk

ik

elec

i zzHzzH
zzz

zzO
l
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))()(())
2

5

2

3
()

2

3

2

1
(()( 13

3

2

1

2

12 



 kk

k

i
kkk

i

N

k

kk

ik

elec

i zzHzzH
zzz

zzO
l

  

))()(())
2

5

2

3
()

2

3

2

1
(()( 13

3

2

1

2

13 



 kk

k

i
kkk

i

N

k

kk

ik

elec

i zzHzzH
zzz

zzO
l

                               (26) 

and )(zH denotes Heaviside’s function. Continuity of zzz,  and zz  must be fulfilled at 1lN interfaces: 

1,...,2,1,)()( 1

)(

,1

)1(

,  



lk

k

zzzk

k

zzz Nkzz                                                                                             (27) 

1,...,2,1,)()( 1

)(

1

)1(  



lk

k

zzk

k

zz Nkzz                                                                                             (28) 

From the recursive Eqs. (27) and (28), ),( txk and ),( txk  will have the following form ( 1,...,2,1  lNk ): 

))()()((

)()()(

1

,68,67,66656463

,8,7,

1

16,5443322,01












lPN

i

xx

i

t

k

ixx

i

c

k

ixx

i

b

k

i

i

t

k

i

i

c

k

i

i

b

k

i

x

k

x

k

x

k

x

kkkk

xx

k

k

AAAAAA

XAXAuAAwAwAwAwA





                             (29) 

))()()((

)()()()(

,

1

610,69,68676665

,10,9,

1

18,7,0645342312,01

xx

PN

i

i

t

k

ixx

i

c

k

ixx

i

b

k

i

i

t

k

i

i

c

k

i

i

b

k

i

x

k

x

k

x

k

x

k

x

kkkkk

xx

k

k

l

BBBBBB

XBXBuBBuBwBwBwBwBwB
















     (30) 

Moreover, the boundary conditions of the transverse normal stress and transverse normal stress gradient on 

the upper and lower faces should be satisfied: 

0)()( 1

)1(

,1

)(

,  zz zzzN

N

zzz l

l                                                                                                                             (31) 

),()(,),()( 1

)(

1

)1( txZztxZz
l

l

N

N

zzzz





                                                                                                (32) 

where ),( txZ 
and ),( txZ 

are the distributed lateral loads acting on the bottom and top surfaces of the 

beam, respectively. From Eqs. (31) and (32), the unknowns 321 ,, www  and 4w  can be expressed in terms of 

,,0 xu ,,0 xxw ,,x ,)( ,

1

1 xu xX ,)( 
, xX ,)(  ,, Z Z ,

i

b , 
i

c  , 
i

t , xx

i

b ,)( , xx

i

c ,)(  and xx

i

t ,)( ),...,2,1( lPNi  :  

))()()((

)()()()(),(

1

,

1

618,

1

617,

1

616

1

615

1

614

1

613

1

18

1

17,

1

16,

1

15,

1

1

1

14,

1

13,0

1

12,0

1

111












lPN

i

xx

i

tixx

i

cixx

i

bi

i

ti

i

ci

i

bi

xxxxxxx ZZXXuwutxw





                        (33) 

))()()((

)()()()(),(

1

,

2

628,

2

627,

2

626

2

625

2

624

2

623

2

28

2

27,

2

26,

2

25,

1

1

2

24,

2

23,0

2

22,0

2

212












lPN

i

xx

i

tixx

i

cixx

i

bi

i

ti

i

ci

i

bi

xxxxxxx ZZXXuwutxw





                        (34) 

))()()((

)()()()(),(

1

,

3

638,

3

637,

3

636

3

635

3

634

3

633

3

38

3

37,

3

36,

3

35,

1

1

3

34,

3

33,0

3

32,0

3

313












lPN

i

xx

i

tixx

i

cixx

i

bi

i

ti

i

ci

i

bi

xxxxxxx ZZXXuwutxw





                         (35) 

))()()((

)()()()(),(

1

,

4

648,

4

647,

4

646

4

645

4

644

4

643

4

48

4

47,

4

46,

4

45,

1

1

4

44,

4

43,0

4

42,0

4

414












lPN

i

xx

i

tixx

i

cixx

i

bi

i

ti

i

ci

i

bi

xxxxxxx ZZXXuwutxw





                        (36) 

By substituting Eqs. (33) to (36) into Eqs. (29) and (30), ),( txk  and ),( txk can be rewritten as follows (

1,...,2,1  lNk ): 

))()()((

)()()()(),(

1

,68,67,66656463

87,6,5,

1

14,3,02,01












lPN

i

xx

i

t

k

ixx

i

c

k

ixx

i

b

k

i

i

t

k

i

i

c

k

i

i

b

k

i

kk

x

k

x

k

x

k

x

k

xx

k

x

k

k

CCCCCC

ZCZCXCXCuCCwCuCtx





                             (37) 

))()()((

)()()()(),(

1

,68,67,66656463

87,6,5,

1

14,3,02,01












lPN

i

xx

i

t

k

ixx

i

c

k

ixx

i

b

k

i

i

t

k

i

i

c

k

i

i

b

k

i

kk

x

k

x

k

x

k

x

k

xx

k

x

k

k

DDDDDD

ZDZDXDXDuDDwDuDtx





                           (38)   

At this stage, all the mechanical unknowns of the displacement fields (Eq. 8) are determined in terms of four 

independent mechanical unknown parameters 0u , 0w ,  and 
1
1u , and electrical unknowns 

i

b , 
i

c  and
i

t
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),...,2,1( lPNi  . Therefore, the final displacement fields of the proposed coupled refined high-order global-

local theory can be written as:  










lPN

i

x

i

t

elec

ix

i
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ix

i

b
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zOzOzO
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1
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))()()()()()((

))(())(()()()(
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)()()()()()()()()(),(),,,(
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,68,67,6665646387
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1

14,3,02,010
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(39) 

where 













1

1

1

2

1111

1

1

1

44

41

33

31

22

21

1

111 )()()()()(
k

j

jj

j

jj

k

j

jk zzHzzCzzHzzDzzzzz  













1

1

1

2

1211

1

1

2

44

42

33

32

22

22

1

122 )()()()()(
k

j

jj

j

jj

k

j

jk zzHzzCzzHzzDzzzzz  













1

1

1

2

1311

1

1

3

44

43

33

33

22

23

1

133 )()()()()(
k

j

jj

j

jj

k

j

jk zzHzzCzzHzzDzzzzz  













1

1

1

2

1411

1

1

4

44

44

33

34

22

24

1

144 )()()()()(
k

j

jj

j

jj

k

j

jk zzHzzCzzHzzDzzzzz  













1

1

1

2

1511

1

1

5

44

45

33

35

22

25

1

155 )()()()()(
k

j

jj

j

jj

k

j

jk zzHzzCzzHzzDzzzzz  













1

1

1

2

1611

1

1

6

44

46

33

36

22

26

1

166 )()()()()(
k

j

jj

j

jj

k

j

jk zzHzzCzzHzzDzzzzz  













1

1

1

2

1711

1

1

7

44

47

33

37

22

27

1

177 )()()()()(
k

j

jj

j

jj

k

j

jk zzHzzCzzHzzDzzzzz  













1

1

1

2

1811

1

1

8

44

48

33

38

22

28

1

188 )()()()()(
k

j

jj

j

jj

k

j

jk zzHzzCzzHzzDzzzzz  












 
1

1

1

2

16311

1

1

63

44

643

33

633

22

623

1

61363 )()()()()(
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1
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                                                                                                                                                                         (40) 

Using Cauchy’s definition of the strain tensor, the in-plane, transverse shear and normal strain 

components may be calculated based on the proposed coupled global-local description of the displacement 

field as:  



10 

 










lPN

i

xx

i

t

elec

ixx

i

c

elec

ixx

i

b

elec

i

xxxxxxxxxxx

zOzOzO

XzRXzPuzTzJwzwu

1

,3,2,1

,,

1

,1,0,,0,0

))()()()()()((

))(())(()()()(





 

))()()()()()()()()(()(

)()()()()()()()()()(

1

,,68,,67,,66,65,64,63,8

,7,,6,,5,

1

1,4,,3,0,2,0,1














lPN

i

xx

i

tz

k

ixx

i

cz

k

ixx

i

bz

k

i

i

tz

k

i

i

cz

k

i

i

bz

k

iz

k

z

k

xz

k

xz

k

xz

k

xz

k

xxz

k

xz

k

zz

Zz

ZzXzXzuzzwzuz





 










lPN

i

x

i

tz

elec

ix

i

cz

elec

ix

i

bz

elec

i

zzzzxxz

zOzOzO

XzRXzPuzTzJw

1

,,3,,2,,1

,,

1

1,,,0

))()()()()()((

)()()()()(





                                                                 (41) 

Since the functions ),,,( tzyxu  and ),,,( tzyxw are coupled in the strain energy expression, it is expected that 

the presented coupled refined global-local theory compensates to some extent for the simplifying assumption 

),,(),,,( 0 txwtzyxw   used only in the computation of the transverse shear stress.  

3. Finite element model 

 
In this section, a finite element representation of the displacement filed description given in Eq. (39) is 

introduced using appropriate shape functions and nodal variables. It can be seen that the expression of the 

strain energy (Eq. (41)) contains the second-order differentiation operators of 0w . Moreover, for more 

accurate results, the slope continuity of 0w should be guaranteed. For these reasons, in-plane variations of 0w  

should be 1C -continuous. Therefore, compatible Hermite cubic shape functions are employed to interpolate 

the in-plane variations of the transverse displacement component 0w . The rotation   can be 0C -continuous 

but it is interpolated by quadratic Lagrangian shape functions to ensure obtaining more accurate results. 

Furthermore, if an identical order is adopted for the shape functions of both xw ,0  and   parameters in the 

relevant transverse shear strain components, the shear locking phenomenon may be avoided due to using a 

consistent displacement field [53, 60-61]. Finally, 0u , 
1
1u , X , X , Z , Z , 

i

b , 
i

c  and
i

t  may be 

interpolated using Lagrangian quadratic shape functions. The proposed piezoelectric beam element as well as 

its nodal degrees of freedom is shown in Fig. 3. As shown in this figure, the beam element has three nodes 

with a variable number of electric potential degrees of freedom at each node. In addition to the displacement 

and electrical unknown parameters, the transverse shear and normal stresses of the top and bottom layers are 

defined at the nodal points of the element. Therefore, interlaced discretization meshes are employed to 

present a mixed formulation (in the global sense). Based on Eqs. (5), (7), (39) and (41), the electric potential, 

displacements, strain and electric field components may be expressed in the following matrices form: 
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ε u
                                                                      (42) 

where   T
wuu ,    T

u ZZXXuwu  1

100 u ,   Tiφ ,  Ti

t

i

c

i

b φu ,
 

 T

xzzzxx ε ,   T

zx EEE , and 
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The vector of displacement and electric potential components uu  and φu may be expressed in terms of the 

mechanical and electrical nodal variables vectors 
e
uu  and 

e

φu  as follows: 
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in which )3,2,1( iNi are the Lagrangian quadratic shape functions defined as:  

)1()1()(,2/)1()(,2/)1()( 332211   NNNNNN                       (44) 

and the Hermitian shape functions are:  
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where   is the natural coordinate and el  denotes the length of the element. Using Eqs. (42) and (43), the 

displacements, electric potential, strain and electric field vectors may be expressed as follows: 
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In Eq. (46), N  denotes displacements and electric potential interpolation matrix. Strains and electric fields 

interpolation matrix is represented with B . 

 The principle of virtual work is employed to extract governing equations of the piezoelectric beam 

element. According to this principle, for a piezoelectric medium of volume   and regular boundary surface 
 , one may write [7]: 
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                                                  (48)       

where SF , VF  , q , Q and   are surface force vector, mechanical body force vector, electrical body charge, 

surface charge and mass density, respectively. u  and φ  are admissible virtual displacement and potential. 

Substituting Eqs. (4), (46) and (47) into Eq. (48), and assembling the element equations yields the following 

general dynamic equation of motion: 

)()()( ttt FqKqM                                                                                                                                   (49) 

The matrices and vectors in the above equation are mass matrix  
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where )(tuq  and )(tφq are the vector of mechanical degrees of freedom and electrical degrees of freedom, 

respectively. 

 

4. Numerical results and discussions 

 

To assess the performance and the validity of the developed coupled theory, some examples of 

piezoelectric sandwich and laminated beams have been analyzed using the presented finite element model. 

The results of the present finite element are compared with the 3D exact piezoelasticity solution [9] and the 

3D finite element (ABAQUS) results. The present numerical results are obtained from a MATLAB program 

whose algorithm is based on the theoretical formulation described in the previous section. The program 
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allows any element at any layer can be made of different materials (piezoelectric or non-piezoelectric). Note 

that the polarization of the piezoelectric materials is aligned in the transverse direction of each piezoelectric 

layer unless stated otherwise. 

 

4.1. Example 1 

 

A simply supported piezoelectric laminated beam with length to thickness ratio 4)/( hLS  (thick 

beam), 10S  (moderately thick beam) and 100S  (thin beam) is analyzed using the present coupled 

theory. This beam has the lamination scheme [
 0/90/90/0/pz ] which pz indicates the piezoelectric 

layer. The substrate of the beam is made of graphite-epoxy with the following properties: 

)33.0,28.0(),(,)87.2,17.7,3.10,181(),,,(  TTLTTTLTTL GPaGGEE   

L and T denote directions parallel and transverse to the fibers, respectively. The piezoelectric layer is made of 

PZT-5A with the following properties: 

GPaGGGEEE )1.21,1.21,6.22,2.53,0.61,0.61(),,,,,( 312312332211  , 

)38.0,38.0,35.0(),,( 231312  , 

Vmddddd /10)584,584,374,171,171(),,,,( 12

2415333231

 , 

mF /10)50.1,53.1,53.1(),,( 8

332211

  

The ratio of the piezoelectric thickness layer to the laminate thickness h is assumed to be 0.1. All layers of 

the substrate are assumed to have equal thickness. The interface of the piezoelectric layer with the substrate is 

assumed to be zero potential.  

4.1.1. Sensor case. A sinusoidal pressure )/sin()( 0 Lxpxp  has been applied on the top surface of the 

simply supported beam. Due to the symmetry, only half of the beam is modeled. Results of the mesh 

convergence study are shown in Table 1 for S=10. This table shows that the convergence rate of the proposed 

finite element model is very high. A mesh with 2 elements gives excellent results in the prediction of 

deflection of the beam. Only 8 elements are adequate to predict the induced sensory potential, in-plane 

displacement and stress components. However, for the analysis of the problem, the beam was mathematically 

divided into 15 beam elements of equal lengths and five layers. The obtained numerical results are 

normalized as follows: 

0

24

0

2

0

3 /10,/)/,,/(),,(,/)/,(100),( phSdEpSSphSESwuwu TTxzzzxxxzzzxxT    

with 
11210374  CNdT . 

The normalized numerical results for deflection, in-plane displacement, transverse shear and normal 

stresses, the induced potential at the sensory layer and in-plane stress are given in Table 2 for three values of 

length to thickness ratio 4S , 10S  and 100S . The variation of the normalized stress and displacement 

components through the thickness ( 4S  and 10S ) are shown in Fig. 4 and Fig. 5. The distribution of the 

normalized induced potential across the sensory layer is also shown in these figures. The transverse normal 

stresses have been calculated using two different methods: (i) employing the constitutive equations; (ii) 

integrating the elasticity equilibrium equations in terms of the stress components, across the thickness of 

laminates. Results of these two approaches are denoted by (C) and (E), respectively. The transverse shear 

stresses have been obtained by integrating the stress equilibrium equation through the thickness of laminates 

at the post-processing level.  

For deflection, the present model gives results with the error less than 4.21%, whatever the length to 

thickness ratio. The model predicts the in-plane displacement and in-plane stress at top face of thin to 

moderately thick laminated beams with the error less than 2.62% and 5.72% respectively. The transverse 

shear and normal stress distributions obtained from the present model are in excellent agreement with the 

exact solution for both thin and thick laminated beams. It can be seen that the present theory unlike most of 

available similar theories, is able to predict the transverse normal stress well from constitutive equations. The 

coupled proposed theory is also capable of predicting the induced sensory potential with very good accuracy 

for thin to moderately thick laminated beams. The error in the predicted sensory potential is only 3.7% for 

moderately thick beams. The error approach zero for thin beams.  

Variations of the normalized deflection calculated at the middle of the sensory composite beam versus the 

aspect ratio are shown in Fig. 6. Comparison of the present results with results of the exact piezoelasticity 

solution reveals that the present beam element is free of shear locking. These results show that the developed 

finite element model performs well in the prediction of the sensory behavior of thick and thin laminated 

beams.  
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4.1.2. Actuator case. An actuating potential )/sin()( 0 Lxx    has been applied on the top surface of the 

simply supported beam. Table 3 shows the results of the mesh convergence test for S=10. Similar to the 

sensor case, the convergence rate of the present finite element is very high. Although a mesh with 8 elements  

adequately  analyzes the problem, the layered substrate composite beam and its piezoelectric layer were 

divided into 15 beam elements of equal lengths and five layers. The obtained numerical results are 

normalized as follows: 

0

2

0

2

0 100/
~

,/),,10/()~,~,~(,)/,(10)~,~(  TTzzTTxzzzxxxzzzxxT dEhDDdYhSSdSSwuwu   

The normalized numerical results for the transverse electric displacement, stress and displacement 

components are compared in Table 4 for length to thickness ratios 4S , 10S  and 100S . Through-the-

thickness distributions of w~ , u~ , xx~ , zz~ , xz~  and zD
~

for thick and moderately thick beams are shown in 

Fig. 7 and Fig. 8. The model predicts the in-plane displacement, deflection and in-plane stresses of thin to 

moderately thick laminated beams with the error less than 5%. For transverse electric displacement, the 

present theory gives results with the maximum error of 0.52% , whatever the length to thickness ratio. 

Similar to the sensor model, the transverse shear stresses distributions deduced from the present model are in 

excellent agreement with the exact solution; even for the very thick beam 4S  (the error is less than 5%). 

The developed theory is also able to predict the transverse normal stresses of both thin and thick active 

laminated beams with good accuracy (the maximum error is 10.15%).  

Considering the various values for the aspect ratio, the normalized deflection of the active composite 

beam is shown in Fig. 9 along with the exact piezoelasticity solutions. It can be inferred from this figure that 

the present finite element does not suffer from shear locking. These results demonstrate that the presented 

model is efficient in predicting the actuator behavior of thick and thin laminated beams.  

4.1.3. Coupled electrical-mechanical loading case. In this case, both actuating potential )/sin()( 0 Lxx    

and sinusoidal pressure )/sin()( 0 Lxpxp  have been applied simultaneously on the top surface of the 

thick simply supported beam (S=4). The obtained numerical results are normalized as follows: 

0

2

0

2 100/ˆ,/)/,,/()ˆ,ˆ,ˆ(  TTzzxzzzxxxzzzxx dEhDDpSS   

In Fig. 10, distributions of xx̂ , zẑ , xẑ  and zD̂ across the thickness direction are depicted. Once more, the 

results of the present finite element based on the coupled refined high-order global-local theory are correlated 

well with the exact solutions. The model estimates the in-plane stress and transverse electric displacement 

with the maximum error of 8.76% and 0.31%, respectively. For transverse shear and normal stresses, the 

error is respectively less than 7.02% and 5.50%. 

   

4.2. Example 2 

 

Geometry, material properties, boundary and loading conditions of the smart laminated composite beam 

of the present example are the same as those of the previous example. The only difference is the lay-up of the 

considered beam which in this example is [
 90/0/90/0/pz ]. 

4.2.1. Sensor case. Through-the-thickness distributions of w , u , xx , zz , xz  and   obtained from the 

present coupled refined high-order global-local theory for the sensory thick and moderately thick beams are 

compared in Fig. 11 and Fig. 12 with the exact piezoelasticity solution. Similar comparison for these 

quantities is presented in Table 5 for the aspect ratios 4S , 10S  and 100S . It is observed from Fig. 11 

and Fig. 12 that the prediction of the transverse shear and normal stresses using the present finite element 

model is agree very well with the exact piezoelasticity solution for both thin and thick beams. For the central 

deflection w and the in-plane displacement u at the top face of the thick beam (S=4), the maximum percent 

error in the present results is 6.49 and 5.92, respectively. In case of thin to moderately thick beams, the 

prediction of the induced electric potential through the thickness by the present model agrees very well to 

those of the exact solutions (the maximum percent discrepancy is 6.94). The discrepancies are more 

remarkable for S=4 that is of less practical importance. The error of the predicted in-plane stress in the sensor 

layer of the thick beams is less than 3.50%.  

4.2.2. Actuator case. Results correspondent to this case study are discussed in Figs. 13-14 and Table 6. It is 

observed from these results that the present coupled theory has captured through-the-thickness variations of 

xz~  and zD
~

quite well even for the thick active laminated beams. Due to the inclusion of the transverse 

normal strains induced through the actuator layer, the prediction of w~ from the present finite element model 

has also good correlation with the exact solutions. In case of thick beams, the present theory estimates the in-
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plane stress of the actuator layer with the error less than 4.50%. The model also predicts the in-plane 

displacement and transverse normal stresses of thin to moderately thick active laminated beams with the 

maximum error 2.27% and 0.84%, respectively.  

 

 

4.3. Example 3 

 

As a final example, a soft core sandwich beam with a piezoelectric layer bonded to its top is considered. 

In this case, results of majority of the available theories may become unreliable due to neglecting the effects 

of the non-zero shear tractions and longitudinal electric field, and ignoring continuity conditions of the 

transverse shear and normal stress components at the conjunctions of piezoelectric layers. In this regard, a 

cantilever smart sandwich beam with length cmL 10 , cross section width cmb 1 , and height cmh 1  is 

considered. Thickness of the piezoelectric layer and face sheets are 0.1h and thickness of the soft core is 

assumed to be 0.7h.  The face sheets are made of graphite-epoxy with the following material properties: 

)49.0,32.0,32.0(),,(,)3322.2,588.3,588.3,9.6,9.6,1.131(),,,,,( 231312231312332211  GPaGGGEEE  

The material properties of the soft core are: 

MPaGGGEEE )4.455,1.545,56.16,2760,2001.0,2208.0(),,,,,( 231312332211   

)00003.0,00003.0,99.0(),,( 231312   

Similar to the previous examples, the piezoelectric layer is made of PZT-5A. The interface of the 

piezoelectric layer with the substrate is also grounded (zero potential). Since no exact 3D piezoelasticity 

solution is available for the considered example, a coupled 3D finite element analysis was performed in 

ABAQUS with a very refined mesh, using the 20-node piezoelectric solid element (C3D20RE).  

 

4.3.1. Sensor case. The smart sandwich beam is subjected to distributed uniform pressures 2/50 mNZ 

and 2/50 mNZ  , and shear tractions 2/250 mNX   and 2/250 mNX  on its top and bottom 

surfaces, respectively (Fig. 15). In order to analyze the problem, the beam was mathematically divided into 

20 beam elements of equal lengths. In Fig. 16, through-the-thickness distributions of the in-plane stress, 

induced sensory electric potential and displacement components are shown. It may be observed that the 

depicted in-plane displacement component based on the present formulation is in excellent agreement with 

the coupled 3D finite element results. The error in present finite element results is 12.73% for the in-plane 

stress, up to 14.07% for the sensory electric potential and 5.61% for the transverse displacement. The 

thickness variations of transverse shear and normal stresses at different sections of the sensory sandwich 

beam are plotted in Fig. 17. The proposed finite element model predicts the transverse shear stresses of the 

sensory sandwich beam with an error less than 4%. Moreover, the transverse normal stresses predicted from 

both the equilibrium and constitutive equations have also good agreement with those extracted from the 

coupled 3D finite element analysis. These results confirm the accuracy of the proposed formulation in the 

prediction of the sensory behavior of sandwich beams.  

4.3.2. Actuator case. In this case, the cantilever piezoelectric sandwich beam is subjected to the actuating 

potential )/sin()( Lxx    on its top surface. Results correspondent to this case study are plotted in Fig. 18. 

As shown in Fig. 18, the prediction of the deflection by the present finite element agrees well with the results 

of ABAQUS due to the inclusion of the effects of both the transverse flexibility and electrical transverse 

normal strains. The model predicts the maximum deflection of the active sandwich beam with the error less 

than 1%. Moreover, the depicted in-plane displacement component based on the present theory has an 

excellent agreement with the coupled 3D finite element results. The model estimates the in-plane and 

transverse shear stresses with the maximum error of 15.24% and 8.55%, respectively. Concerning the 

transverse electric displacement, the coupled refined global-local theory yields very accurate results with 

respect to ABAQUS, with a maximum error of 1.23%. The effectiveness of the present theory in the 

prediction of the active behavior of smart sandwich beams is confirmed through these results.  

 

5. Conclusions 

 

A computationally economic and accurate coupled refined global-local finite element model is presented 

for static response of piezoelectric laminated composite and sandwich beams. Contrary to most of the 

available theories, all the kinematic and stress boundary conditions are satisfied at the interfaces of the 

piezoelectric layers with the non-zero longitudinal electric field. Moreover, both electrical transverse normal 

strains and transverse flexibility are taken into account for the first time in the present theory. Unlike the 
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available laminated piezoelectric composite beam models, the non-uniform non-zero shear and normal 

traction boundary conditions on the top and bottom surfaces of the beam are satisfied for any electrical 

boundary conditions. The describing expression of the in-plane displacement of the beam contains a high-

order polynomial, an exponential expression and a layerwise term containing first order differentiation of 

electrical unknowns. The transverse displacement is introduced using a combination of continuous piecewise 

fourth-order polynomial with a layerwise representation of electrical unknowns. A quadratic electric potential 

is also assumed in the piezoelectric layers. In the proposed finite element formulation, the mechanical 

number of the unknown parameters is very small and is independent of the number of the layers. Besides, the 

shear locking phenomenon does not appear in the presented smart beam element.  

In order to verify the accuracy of the proposed finite element formulation, some comparisons have been 

made with the results obtained from the coupled 3D finite element (ABAQUS) analysis and 3D theory of 

piezoelasticity. To this end, various electro-mechanical bending tests for piezoelectric laminated/sandwich 

beams with different geometric parameters, stacking sequences, boundary conditions, and number of layers 

are considered. The comparisons show that the presented coupled finite element formulation, besides its 

advantages of low computational time due to using small number of the unknown parameters is sufficiently 

accurate in the modeling of thin and thick piezoelectric composite and sandwich beams under different 

mechanical and electrical loading conditions.  
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Figures' legend: 

 

Fig. 1. Geometric parameters of the smart laminated beam. 

Fig. 2. Global and local coordinate systems of the piezoelectric laminated beam. 

Fig. 3. (a) Mechanical and (b) electrical representation of the piezoelectric beam finite element. 

Fig. 4. Through-the-thickness variations of w , u , xx , zz , xz  and  for the sensory [  0/90/90/0/pz ] 

beam with S=4. 

Fig. 5. Through-the-thickness variations of w , u , xx , zz , xz  and  for the sensory [  0/90/90/0/pz ] 

beam with S=10. 

Fig. 6. The normalized transverse deflection ( )0,5.0( Lw ) versus the aspect ratio for the sensory [

 0/90/90/0/pz ] beam with S=4. 

Fig. 7. Through-the-thickness variations of w~ , u~ , xx~ , zz~ , xz~  and zD
~

for the active [  0/90/90/0/pz ] 

beam with S=4. 

Fig. 8. Through-the-thickness variations of w~ , u~ , xx~ , zz~ , xz~  and zD
~

for the active [  0/90/90/0/pz ] 

beam with S=10. 

Fig. 9. The normalized transverse deflection ( )0,5.0(~ Lw ) versus the aspect ratio of the active [

 0/90/90/0/pz ] beam with S=4. 

Fig. 10. Through-the-thickness variations of xx̂ , zẑ , xẑ  and zD̂ for the thick [  0/90/90/0/pz ] beam 

under coupled electro-mechanical loadings (S=4). 

Fig. 11. Through-the-thickness variations of w , u , xx , zz , xz  and  for the  
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sensory [  90/0/90/0/pz ] beam with S=4. 

Fig. 12. Through-the-thickness variations of w , u , xx , zz , xz  and  for the sensory [  90/0/90/0/pz

] beam with S=10. 

Fig. 13. Through-the-thickness variations of w~ , u~ , xx~ , zz~ , xz~  and zD
~

for the active [  90/0/90/0/pz ] 

beam with S=4. 

Fig. 14. Through-the-thickness variations of w~ , u~ , xx~ , zz~ , xz~  and zD
~

for the active [  90/0/90/0/pz ] 

beam with S=10. 

Fig. 15. Description of the geometry, boundary conditions, and loadings of the sensory sandwich beam. 

Fig. 16. Variations of )(mw , )(mu ,  )/( 2mNxx and )(V  through the thickness for the sensory sandwich 

beam. 

Fig. 17. Through-the-thickness variations of )/( 2mNxz and )/( 2mNzz  at different sections of the 

sensory sandwich beam. 

Fig. 18. Variations of )(mw , )(mu , )/( 2mNxx , )/( 2mNxz  and )/( 2mCDz  through the thickness of the 

active sandwich beam. 

 

 

Tables' legend: 

 

Table 1. Mesh convergence study for the sensory beam [  0/90/90/0/pz ] with 10S . 

Table 2. Results for the sensory beam [  0/90/90/0/pz ] under the pressure load. 

Table 3. Mesh convergence study for the actuated beam [  0/90/90/0/pz ] with 10S . 

Table 4. Results for the actuated beam [  0/90/90/0/pz ] under sinusoidal electric potential. 

Table 5. Results for the sensory beam [  90/0/90/0/pz ] under the pressure load. 

Table 6. Results for the actuated beam [  90/0/90/0/pz ] under sinusoidal electric potential. 
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